
A Flexible Scalable Hardware Architecture for
Radial Basis Function Neural Networks

Mahnaz Mohammadi∗, Nitin Satpute∗, Rohit Ronge∗, Jayesh Ramesh Chandiramani∗, S. K. Nandy∗

Aamir Raihan†,Tanmay Verma† , Ranjani Narayan‡ and Sukumar Bhattacharya§
∗Indian Institute of Science, Bangalore, India

Email: {mahnaz, nitin, rohit, jayesh}@cadl.iisc.ernet.in, nandy@serc.iisc.in
†Indian Institute of Technology, Varanasi, India

Email: {aamir.raihan.ece11, tanmay.verma.ece11}@itbhu.ac.in
‡Morphing Machines Pvt. Ltd. ,Bangalore, India
Email: ranjani.narayan@morphingmachines.com

§ Indian Institute of Technology, Mandi, Himachal Pradesh, India
Email:Sukumar.Bhattacharya@acm.org

Abstract—Radial Basis Function Neural Networks (RBFNN)
are used in variety of applications such as pattern recognition,
control and time series prediction and nonlinear identification.
RBFNN with Gaussian Function as the basis function is con-
sidered for classification purpose. Training is done offline using
K-means clustering method for center learning and Pseudo
inverse for weight adjustments. Offline training is done since the
objective function with any fixed set of weights can be computed
and we can see whether we make any progress in training.
Moreover, minimum of the objective function can be computed
to any desired precision, while with online training none of these
can be done and it is more difficult and unreliable. In this
paper we provide the comparison of RBFNN implementation on
FPGAs using soft core processor based multi-processor system
versus a network of HyperCells [8], [13]. Next we propose three
different partitioning structures (Linear, Tree and Hybrid) for
the implementation of RBFNN of large dimensions. Our results
show that implementation of RBFNN on a network of HyperCells
using Hybrid Structure, has on average 26x clock cycle reduction
and 105X improvement in the performance over that of multi-
processor system on FPGAs.

I. INTRODUCTION

Artificial Neural Networks (ANNs) [1] are computational
simulation of biological neurons, made up of simple and highly
interconnected processing elements, arranged in layers and
capable of producing outputs through processing information
by their dynamic state response to external outputs.

Radial Basis Function Neural Network (RBFNN) [2] is
a special type of feedforward neural network with a simple
topological structure and three learning phases [3], composed
of three layers:

• Input Layer: Each node in the input layer represents
a dimension of the input.

• Hidden Layer: This layer has a variable number of
neurons (the optimal number is determined by the
training process). Each neuron consists of a radial
basis function centered on a point with as many
dimensions as the input. The spread (radius) of the
RBF function may be different for each dimension.
The centers and spreads are determined by the training

process. When presented with vector x of input values
from the input layer, a hidden neuron computes the
Euclidean distance of the test case from center point of
the neurons and then applies the RBF kernel function
to this distance using the spread values. The resulting
value is passed to the the output layer.

• Output Layer: The value coming out of a neuron in the
hidden layer is multiplied by a weight associated with
the neuron and passed to the summation unit which
adds up the weighted values and presents this sum as
the output of the network.
Figure 1 shows the architecture of RBFNN. While
similar to back propagation in many respects, RBFNN
has several advantages:
◦ RBFNN architecture is simpler as there is

only one hidden layer compared to other feed-
forward neural networks with multi hidden
layers.

◦ RBFNN usually trains faster than back propa-
gation networks.

◦ RBFNN is less susceptible to problems with
non-stationary inputs because of the behavior
of the hidden units in RBFNN .

Fig. 1: Radial Basis Function Neural Network Architecture.
[“w1, w2, ..., wn” are corresponding weights between hidden
layer and output layer.]

There are two fundamentally different alternatives for im-
plementing neural networks: a software simulation in conven-
tional computers and a special hardware solution capable of



decreasing execution time. A software simulation is useful to
develop and debug new algorithms, as well as to benchmark
them using small data sets. In hardware implementation,
hardware specification is the first step in selecting a hardware
solution of ANNs and includes the type of the ANN, number of
neurons, number of inputs and outputs, number of connections
to each neuron, precision, speed of operation or performance
and other characteristics that can be important depending on
the application. The precision used should be an important
parameter to take into account.

However, if large data sets are used, a software simula-
tion is not fast enough. Hardware implementation of neural
techniques has a significant number of advantages, mainly in
the processing speed. For networks with large numbers of
neurons and synapses, the conventional processors are not able
to provide real time responses and training capabilities, while
parallel processing of multiple simple procedures achieves a
large increase in speed. Specialized hardware can offer very
high computational power at limited price and thus can achieve
several orders of speed-up, especially in the neural domain
where parallelism and distributed computing are inherently
involved [4], [5], [7].

Researchers developed implementations of ANN on
Application-Specific Integrated Circuits (ASIC). ASICs are
responsible for the evolution of computer systems from work-
stations to hand-held devices that need real-time performance
within the budget for physical size and energy dissipation.
However, these circuits are inflexible as any modification
requires redesign and refabrication, which is both expensive
and time consuming considering the complexity of recent
embedded platforms. Therefore, reconfigurable architectures
(RAs) that can be dynamically reconfigured and reused, is
suggested and they are known to provide high performance
in a wide range of applications.

RAs [8], [13] are devices that contain programmable
functional blocks and programmable interconnects between
functional blocks. Spatial distribution of functional blocks in
conjunction with a flexibility of interconnect, allows exploiting
various forms of parallelism inherent in the application. In
comparison with the programmability provided by Instruction
Extension architectures (IE) [8], [12], [13], the programma-
bility provided by RAs allow substantial changes to the data-
path itself. Hence, as with dedicated architectures, RAs can
implement application-specific computing structures without
sacrificing flexibility. Traditional RAs, such as FPGAs [6],
provide interconnect structures and functional blocks that
operate at bit-level. Hence, they are able to realize datapaths
and controllers with arbitrary word lengths. For algorithms that
are based on operands represented with multiple bits, bit-level
reconfigurability results in large overhead in terms of area,
delay, energy, and configuration time.

HyperCell (HC) [8], [13] is a reconfigurable architecture
that consists of Compute Units (CUs) and switches. The
computations of an IE [13] are assigned to CUs and the
switches are configured to connect CUs as per communica-
tion requirements within the IE. The IE synthesis methodol-
ogy of HC ensures maximal utilization of resources on the
reconfigurable datapath. The methodology for realizing IEs
through HCs permits overlapping of potentially all memory
transactions with computations and this introduces significant

improvement in performance for streaming applications over
general purpose processor based solutions, by fully pipelining
the datapath. Post-silicon realization of IEs on HC entails
synthesis of multiple-input and multiple-output (MIMO) macro
operations on the same hardware datapath which avoids re-
designing hardware datapaths for each individual choice of
IEs. In this paper we target the realization of classification
using RBFNN on a network of HCs by synthesizing RBFNN
specific MIMO operations on HCs. This involves mapping
and scheduling of RBFNN onto multiple HCs. Proposing and
evaluating three different partitioning structures (Linear, Tree,
Hybrid) on HyperCell and comparing the results of Hybird
Structure on MPSoC and HyperCell are our contributions in
this paper.

Rest of the paper is organized as follows. In section II
mapping RBFNN on HC and two different implementation
methods for that are shown. In section III different partitioning
structure on HCs are discussed. In section IV RBFNN on soft
core processor is emulated. In section V results of implement-
ing RBFNN on HC and MB are presented. In section VI we
conclude with a summary of the contribution of the paper.

II. MAPPING OF RBFNN ON HYPERCELL

RBFNN computations require the computation of Eu-
clidean Distance between RBF centers and the input pattern.
Utilizing fully pipelined architecture of HyperCell, this compu-
tation can be mapped on HC in two ways: Pipelined Implemen-
tation and Parallel Implementation. In Pipelined Implementa-
tion, the Euclidean Distance calculation from different RBF
centers are pipelined and in Parallel Implementation, Euclidean
Distance calculation is done in parallel.

A. Pipelined Implementation

The Data Flow Graph (DFG) of RBFNN with N input
nodes and C output nodes considering a center at a time is
divided into two parts: The first part, which we call ”Basis
Generator”, includes the operations needed for calculating
Euclidean Distance squared between input and center and
the radial basis function at the hidden node (Gaussian ker-
nel). These operations are: N subtractions, N Squares, N-1
additions, 1 division and 1 exponentiation. The second part,
called ”Accumulator”, includes the operation needed for output
calculation (C multiplications and C additions). Therefore a
total number of 3N + 1 + 2C computing nodes are needed
to map the above mentioned operations on HC. Increase in
the dimension of input will only affect the Basis Generator,
and similarly, increase in the number of outputs (classes) will
only affect the Accumulator. Therefore, mapping the Basis
Generator and Accumulator separately will provide modularity.

In Pipelined Implementation a single Basis Generator is
implemented on single HC or multiple HCs. This Basis Gener-
ator is used to calculate the Euclidean Distance from the input
pattern to all RBF Centers in a pipelined way. The results for
Pipelined Implementation are shown in section V.

B. Parallel Implementation

In this method we exploit the parallelism across centers.
Different centers are mapped on different HCs and inputs are
processed simultaneously. Implementation of Basis Generator
on HC/HCs is/are similar to the Pipelined Implementation;



instead of implementing one Basis Generator, multiple of them
are implemented in parallel. Each Basis Generator generates
the radial basis functions of different centers. Implementation
of accumulator portion of DFG of RBFNN in this method
is different from the Pipelined Implementation. As all the
radial basis functions of different centers are available in
parallel, we multiply and add in parallel. Though this results
in substantial improvement in performance, it is very resource
hungry. Additionally, due to constraints of available software
tools for mapping and scheduling, we do not pursue this choice
for implementing on HC (in this paper).

Figure 2 shows the DFG of four dimensional RBFNN.
Operations performed in this figure are: Subtraction (SUB),
Square (SQR), Addition (ADD), Division (DIV), Exponentia-
tion (EXP) and Multiplication (MUL).

Fig. 2: DFG of 4 - dimensional RBFNN.
[“x1, x2, x3, x4” are input dimensions; “c1, c2, c3, c4” are cen-
ter dimensions; “w1, w2, w3” are weights between hidden
layer and output layer; “sigma1 = −2 ∗ radius2” and
“Acc1, Acc2, Acc3” are outputs.]

III. PARTITIONING RBFNN ON HYPERCELLS

The amount of compute resources on a single HC is limited
and hence only up to a certain dimension of inputs and outputs
can be mapped on a HC. For mapping higher dimensions we
have to partition the DFG of the RBFNN onto multiple HCs.
Partitioning onto multiple HCs should be done in such a way
that it satisfies the following conditions:

• Number of inter-HyperCell communications should be
minimum.

• HyperCell resources should be utilized to the maxi-
mum.

• The partitioned DFG should not have more nodes
having external inputs than the peripheral switches on
the HC (Figure 3) as it would increase the latency due
to switch traversal.

For Mapping RBFNN of N input dimensions and C output
classes we require at least X HCs such that the total number
of compute resource available on these X HCs is greater or

equal to the number of compute nodes on the DFG of RBFNN
considering a centre at a time.(The size of a HC is defined as
the total number of CUs in it. In this exposition, we consider
HCs of size 25, i.e a HC of 5x5 CUs).

(X − 1) ∗ sizeofHC � 3 ∗N + 1+ 2 ∗C ≺ X ∗ sizeofHC

Mapping RBFNN of six input dimensions and three output
classes on HC is shown in Figure 3.

Fig. 3: Mapping RBFNN of six input dimensions and three
outputs on HyperCell.
[“x1,..., x8” are input dimensions; “c1, ..., c8” are center di-
mensions.]

A. Partitioning DFG of Basis Generator of N dimensional
RBFNN on HyperCells

The procedure for partitioning DFG of Basis Generator part
on HCs is carried out in 2 steps:

• Identifying Subgraphs optimal for mapping on HCs.

• Defining Communication links between these HCs.

Base Structure is defined as DFG of maximum possible di-
mension whose Euclidean Distance Squared can be calculated
on a single HC. Let Ns be that maximum possible dimension.
Ns satisfies the following equation.

3 ∗Ns − 1 ≺ sizeofHC ≺ 3 ∗Ns + 2

For example on a HC of size (5x5) the maximum possible di-
mension whose Euclidean Distance Squared can be calculated
on a single HC is eight.



The DFG of the Base Structure is shown in Figure 4. In this
figure Operations needed for Euclidean Distance calculation
between input and center are: Subtraction (SUB), Square
(SQR) and Addition (ADD).

Fig. 4: Base Structure on HyperCell of size 5X5.

We partition the DFG of RBFNN to create maximum
number of Base Structures. Then we define communication
links between these subgraphs. Depending on communication
links, three partitioning methods are introduced:

1) Linear Structure: In this method for partitioning N
dimension RBFNN considering one center at a time, bN/Nsc
Base Structures are required. If N is not an integral multiple
of Ns, then the remaining dimensions is mapped on an
additional HC. The number of HCs required, a = dN/Nse.
The communication between these HCs is done in a linear
manner. (i.e. The output of each HC is fed as an input to
the next HC). Linear Structure is modular, as increasing the
dimension of RBFNN will affect only the number of the Base
Structures, not the mapping of the Base Structures on HCs. The
number of clock cycles required in this architecture is linearly
proportional to the number of HCs used for mapping, therefore,
it is not suitable for mapping RBFNN of large dimensions.
Figure 5 shows the Linear Structure for partitioning RBFNN
on a HC.

Fig. 5: Linear Structure.
[“HC1 to HCN” are used for implementing Base Structures
and Accumulator HC contains the operations needed for output
calculations. The number of Accumulator HC may be more
than one based on the number of the output classes in
RBFNN.]

2) Tree Structure: In this method the DFG of RBFNN,
considering one center at a time is partitioned in different
stages :

First Stage : This stage is very similar to Linear Structure
(i.e. dN/Nse Base Structures are required), but instead of
passing the output/outputs of each HC to the next one, they
pass to the HC/HCs of the second stage.

Second Stage : The HCs of this stage collect outputs of
the HCs of first stage and add them to generate the final
Euclidean Distance Squared between the input and the center.
The number of HCs in this stage depends on the number of
outputs passed by the HCs in the first stage and the number of
peripheral switches on HCs. Let P be the number of peripheral
switches on a HC, the number of HCs required in this stage
will be : a + [a/2P ] + [a/(2p)2] + ... + [a/(2P )m−1] + 1,
where m is the number of substages (hierarchy of HCs) in
second stage.

The clock cycles required for processing one center is
proportional to m in this method. For very large dimensions
of RBFNN, there will be considerable improvement in perfor-
mance, compared to Linear Structure. The Tree Structure of
HCs realizing the RBFNN is shown in Figure 6.

Fig. 6: Tree Structure.

3) Hybrid Structure: The second stage of Tree Structure
will be complex if the total number of the outputs passed from
the first stage becomes too large. To minimize this complexity
we try to decrease the number of outputs passed from first stage
to the second stage by combining the HCs in the first stage in a
linear way by grouping them in different ”Linear Blocks” and
pass the outputs generated by each linear block to the HC/HCs
of the second stage. Besides being as modular as Linear
Structure, performance of Hybrid Structure is comparable to
that of Tree Structure. In Hybrid Structure (L,M), L is defined
as the number of HCs in each linear block in the first stage and
M is the number of the substages in the second stage. For (L ,
0) (i.e. zero substage in the second stage), only one HC will be
present in the second stage, therefore to map a N dimensional
RBFNN on HCs with P number of peripheral switches, where
each HC can have Ns dimension mapped on it, the number of
HCs in each linear block will be L = N/(2 ∗ P ∗Ns). Total
Number of HCs required in this method for M = 0 will be
dN/Nse+1 and the clock cycles required will be proportional
to L. Thus there will be considerable reduction in the clock
cycles required by this method compared to Linear method. By
increasing the number of sub-stage in second stage (i.e. M),
the clock cycles can be reduced further, as it is proportional
to L = N/(2 ∗ P )M+1 ∗ Ns. Hybrid Structure, is shown in
Figure 7.



Fig. 7: Hybrid Structure.

IV. EMULATION OF HYPERCELL PARTITIONING ON A
MULTI-PROCESSOR SYSTEM

In order to verify the functional correctness of the Pipelined
Implementation scheme, a Multi-Processor System-on-Chip
(MPSoC) configuration is used. The Hybrid Structure par-
titions are run as applications on interconnected soft core
processors implemented on the FPGA. In addition, in order to
keep all the processors busy (to maximize the performance),
we implement the Parallel Implementation scheme (mentioned
in section II.B).

A. MicroBlaze Base Multi Processor System

The MicroBlaze (MB) soft processor core from Xilinx is
a 32-bit Reduced Instruction Set Computer (RISC) based on
Harvard architecture[10] with a rich instruction set optimized
for embedded applications. With the MB soft processor solu-
tion, we get complete flexibility to select the combination of
peripheral, memory and interface features. This flexibility of
the soft-core makes it an ideal processor to create a MPSoC
on FPGA. MB v8.00b has been used in our experiment. The
architecture of MB is shown in Figure8.

Fig. 8: MicroBlaze Block Diagram.

The MPSoC architecture [9] consists of multiple MBs each
with its own private BRAM connected to its Local Memory
Bus (LMB). Each MB is connected to the common Processor
Local Bus (PLB) and has a full-duplex connection to every
other MB via a pair of Fast Simplex Links (FSL). The MB
Debug Module (MDM) and Timer are also present in the
design. The MDM is connected to each processor to enable
debugging. The MicroBlazes hardware FPU performs all com-
putations (ie. addition, subtraction, multiplication and division)
in the application program, but does not support hardware
exponentiation. Hence a basic exponentiation hardware unit

(consuming 39 cycles not including communication cost to
and from the processor) is implemented on the FPGA and
paired with each processor via FSL. The complete design is
implemented on the Xilinx ML510 Evaluation Platform.

In this MPSoC emulation setup, partitioned applications
(as per Pipelined and Parallel Implementations) are executed
on the bare metal MBs (without a real-time operating system).
The data is provided to MPSoC by the host machine via univer-
sal asynchronous receiver/transmitter (UART) . Each processor
receives input data from the UART and sends computed data
to the other processors (as per the partitioning scheme) via
FSL. A shared memory (BRAM/DDR) could be used, but that
would add to the latency in data access. So copies of the input
data required by each MB is stored in its local BRAM. Once
this initialization is done, the timer is started and a ready signal
is passed to each processor via FSL to begin execution. The
communication of the intermediate data is done via FSL. The
proper synchronization and coherency among the processors
in the execution is maintained by the blocking nature of the
functions getfsl() and putfsl().

Figure 9 shows the MPSoC emulation setup.

Fig. 9: MPSoC emulation setup.

B. Functional Verification

We emulated Pipelined Implementation scheme using one,
two and five MB processors and checked for functional correct-
ness, exactly mimicking the same partitioning done on HC, so
that we can realistically measure their relative performance.
Due to MicroBlazes slow mode of communication, a large
number of cycles are expended, resulting in lower perfor-
mance.
C. Partitioning schemes for obtaining better performance

Along with requiring a greater number of data transfers
among processors (an overhead that gets magnified in the
case of the MPSoC setup), the Pipeline Implementation also
allots asymmetric execution load over the processors, wasting
compute resources. By partitioning the RBFNN across the cen-
ters (i.e. using the Parallel Implementation), communication is
minimized and all processors are kept busy until the end of
execution.

V. RESULTS

Three different data sets, ”IRIS”, ”WINE” and ”SPECTF
HEART”, from UCI Machine Learning Repository [11] were
used for implementing RBFNN using Hybrid Structure, on
HC as a reconfigurable architecture and on MB as MPSoC
architecture. We used Bluespec code of HC [8], [13] as a
platform with RBFNN as an application on it and simulated
the code to calculate the clock cycles. In case of MB, we
calculated the number of clock cycles by running software
programs of RBFNN on MB.



Table I shows the number of operations needed for RBFNN
computation of the data sets. In case of MB implementation,
both Pipelined Implementation and Parallel Implementation
methods are used. The number of the clock cycles on both HC
and MB, is shown in Table II. Speed up of HyperCell based im-
plementation over MPSoC implementation is shown in Table
III. The network of HCs were clocked at 500 MHz and MPSoC
was clocked at 125 MHz. Figure10.A shows the comparison of
clock cycles on MicroBlaze and HyperCell based on Pipelined
Implementation for IRIS, WINE and SPECTF HEART data
sets and figure 10.B shows the comparison of clock cycles on
MicroBlaze based on PipeLined and Parallel Implementation
for WINE and SPECTF HEART data sets (IRIS data set can
not be implemented using Parallel Implementation method as
there is need of only one processor for implementation). As
the figure shows the Parallel Implementation scheme is the
optimized method and gives better performance than Pipelined
Implementation method for MB.

TABLE I: Operations needed for RBFNN calculations on IRIS
(denoted by A), WINE (denoted by B) and SPECTF HEART
(denoted by C).

Data No.
of

No.
of

No.
of

Operations Needed for RBFNN

Set Input Hidden output Computation
Nodes Nodes Nodes

SUB SQR ADD DIV EXP MUL
A 4 8 3 4 4 6 1 1 3
B 13 26 3 13 13 15 1 1 3
C 22 44 2 22 22 23 1 1 2

TABLE II: Comparison of total clock cycles on HperCell and
MicroBlaze. IRIS (denoted by A), WINE (denoted by B) and
SPECTF HEART (denoted by C).

Data No. of No. of Total Total Clock
Set HyperCells processors clock Cycles on

used for on cycles on MicroBlaze
mapping MicroBlaze HyperCell

Pipelined Parallel
Implem Implem
entation entation

A 1 1 230 2088 —
B 2 2 439 16732 13183
C 5 5 584 18636 14350

TABLE III: Speed up of HC based implementation over
MPSoC.

Data Set Speed up of HC based implementation over MP-
SoC

IRIS 36.313
WINE 152.455
SPECTF
HEART

127.643

VI. CONCLUSION

Radial Basis Function Neural Network with Gaussian func-
tion as the basis kernel and offline training was considered for
classification purpose. We implemented RBFNN on HyperCell
(using Pipelined Implementation method) and on MicroBlaze
(using Pipelined and Parallel Implementation methods) and

compared the obtained results in case of Pipelined Imple-
mentation scheme. For implementing RBFNN of large di-
mensions on HyperCells, three different partitioning schemes
were proposed. Comparison of obtained results, demonstrates
(as expected), HyperCells take much less number of clock
cycles for the execution of RBFNN than the corresponding
Multi-Processor-System-On-Chip (MPSoC). Results show that
implementation of RBFNN using Hybrid Structure on Hy-
perCell has on average 26x clock cycle reduction and 105X
improvement in the performance over that of multi-processor
system on FPGAs.

(B)(A)

Fig. 10: A. Comparison of the clock cycles on HyperCell
and MicroBlaze, based on Pipelined Implementation method.
B. Comparison of the clock cycles on MicroBlaze, based on
Pipelined and Parallel Implementation methods.

REFERENCES

[1] Haykin, Simon S., et al. ”Neural networks and learning machines.” Vol.
3. Upper Saddle River: Pearson Education, 2009.

[2] M. D. BUHMANN , ”Radial Basis Functions: Theory and Implemen-
tations.”;First ed.; published by the press syndicate of the university of
cambridge, Cambridge, United Kingdom, 2003.

[3] Schwenker, Friedhelm, Hans A. Kestler, and Gnther Palm. ”Three
learning phases for radial-basis-function networks.” Neural networks
14.4 (2001): 439-458.

[4] Dias, Fernando Morgado, Ana Antunes, and Alexandre Manuel Mota.
”Artificial neural networks: a review of commercial hardware.” Engi-
neering Applications of Artificial Intelligence 17.8 (2004): 945-952.

[5] Misra, Janardan, and Indranil Saha. ”Artificial neural networks in
hardware: A survey of two decades of progress.” Neurocomputing 74.1
(2010): 239-255.

[6] Youssef, Ayman, Karim Mohammed, and Amin Nasar. ”A Reconfig-
urable, Generic and Programmable Feed Forward Neural Network Im-
plementation in FPGA.” Computer Modelling and Simulation (UKSim),
2012 UKSim 14th International Conference on. IEEE, 2012.

[7] Liu, Jihong, and Deqin Liang. ”A survey of FPGA-based hard-
ware implementation of ANNs.” Neural Networks and Brain, 2005.
ICNN&B’05. International Conference on. Vol. 2. IEEE, 2005.

[8] Das Saptarsi, Kavitha Madhu, Madhav Krishna, Farhad Merchant, Ipsita
Biswas, Adithya Pulli, S. K. Nandy, and Ranjani Narayan. ”A Frame-
work for Post-Silicon Realization of Arbitrary Instruction Extensions on
Reconfigurable Data-paths.” Journal of Systems Architecture (2014).

[9] Huerta, P., et al. ”Multi microblaze system for parallel computing.”
Proceedings of the 9th International Conference on Circuits, str. 2005.

[10] MicroBlaze Processor Reference Guide, http://www.xilinx.com/support/
documentation/sw manuals/mb ref guide.pdf, 2008.

[11] UCI Machine Learning Repository, http://archive.ics.uci.edu/ml.
[12] Vassiliadis, Stamatis, Stephan Wong, Georgi Gaydadjiev, Koen Bertels,

Georgi Kuzmanov, and Elena Moscu Panainte. ”The molen polymorphic
processor.” Computers, IEEE Transactions on 53, no. 11 (2004): 1363-
1375.

[13] Kavitha Madhu, Saptarsi Das, Madhava Krishna, Nalesh S, S K
Nandy and Ranjani Narayan,”Synthesis of Instruction Extensions on
HyperCell, a Reconfigurable Datapath”, International Conference on
Embedded Computer Systems: Architectures, Modeling and Simula-
tion,SAMOS Island, Greece, July 2014.


