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ABSTRACT

We have seen from the literature that it’s not immediate to compare performance results from
different published research papers. We propose a methodology to summarize typical curves used
to indicate the performance of a given computing platform. We present performance of matrix
multiplication on a GPU platform using a single point. We form clusters of points with similar
performance values. We have found three clusters for the SGEMM, SGEMM & DGEMM, and
DGEMM. We compare and evaluate platforms in these clusters based on the underlying hardware
platform, precision, algorithm, library, etc.
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1 Introduction

A huge number of papers have been published on comparing different computing plat-
forms. However we realized that is not so immediate to compare results from different re-
search groups or even from same work. Therefore we propose a methodology to summarize
typical curves that are used to indicate the performance of a given computing platform.
Since nowadays GPUs are one of the most promising high performance computing plat-
forms (also integrated on same die as CPUs in Intel, AMD, NVIDIA chips), we selected
them to illustrate our methodology. However, many different applications are used to show
the benefits of a computing platfom. We restricted our attention to probably the most widely
used benchmark, i.e., Matrix Multiplication (MM) of dense matrices which is a very common
kernel in a vast variety of applications [VD08].

Our proposed methodology aims at identifying a single point which could identify a
fundamental change in the reference curves we considered. We identify such point for each
combination of platform, precision, algorithm, library, etc, and represent those points in a
graph in order to compare performance and limitations more easily for the actual bench-
mark (MM in our case study). The goal is to provide GPU comparison based on MM. The
rest of the paper is organized as follows. Section 2 presents performance comparisons of var-
ious MM algorithms on different parallel computing platforms in terms of Cluster Analysis.
Finally, Section 3 concludes and discusses about future research issues.
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2 Cluster Analysis

Cluster analysis is intended to identify group of platforms with comparable performance.
We have plotted several points in the graph considering the Last Linear Point. These clusters
are made in order to understand the performance variations in different platforms. This
permits for example the selection of a platform for expected performance. The goal of this
analysis is to

1. Distinguish performance of SGEMM and DGEMM on different platforms.

2. Identify characteristics of MM on different platforms (HW/SW) for clusters of similar
performance values.

Let us consider a typical weak scaling curve [VD08]. We define "Last Linear Point" as fol-
lows. We identify the linear region (GFlops = K (MS)) where MS is the matrix size (X-axis).
For each subsequent point, we measure the vertical distance from the previous linear region.
When the deviation of the curve from linear region is larger than given threshold (Th), the
point is referred as Last Linear Point (LLP). Figure 1 gives the analysis of LLP. Mathemati-
cally,

delta = kX − f(X)

delta > Th

Th = 5% ∗ k ∗X (1)
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Figure 1: Last Linear Point

One challenging step is the evaluation of the slope k of the linear region. This can be
rigourously done by linear regression techiques. (not shown here.) Please note that in this
study, we choose 5% in equation 1. Further interpolation of such value is left on future work.

Reasons for calculating the LLP are



1. It can always be calculated.

2. It gives maximum values of MS and GFlops for which performance deviates first from
linear region.

3. It can be used to form clusters of similar performance values.
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GEMM                                                                                 PLATFORMS                    

A 256 180 [VD08](f-5) SGEMM 9800 GTX (16x1.67 GHz) 

B 256 225 [VD08](f-5) SGEMM 8800 GTX (16x1.35 GHz)  

C 128 50 [VD08](f-5) SGEMM 8600 GTS (4x1.45 GHz) 

D 128 30 [VD08](f-5) SGEMM Core2Duo, 2.67 GHz 

E 256 80 [VD08](f-5) SGEMM Core2Quad, 3.0 GHz 

F 128 38 [VD08](f-6) DGEMM Core2Quad, 3.0 GHz 

G 384 340 [VD08](f-5) SGEMM GTX 280 (30x1.30GHz) 

H 600 75 [VD08](f-6) DGEMM GTX 280 (30x1.30GHz) 

I 1024 360 [NTD11](f-1) SGEMM GTX280, CUDA 2.3 

J 1024 75 [NTD11](f-1) DGEMM GTX280, CUDA 2.3, 

K 288 65 [NTD11](f-8) DGEMM GTX 280, MAGMA  

L 200 55 [NTD11](f-8) DGEMM GTX 280, Cublas 2.3  

M 320 250 [NTD11](f-9) SGEMM GTX 280, MAGMA  

N 352 200 [NTD11](f-9) SGEMM GTX 280, Cublas 2.3  

O 1536 230 [CCM09](f-5) SGEMM GTX 280, Cublas 1.0  

P 1536 315 [CCM09](f-5) SGEMM GTX 280, Cublas 2.0  

Q 1536 320 [CCM09](f-5) SGEMM GTX 280, Algo_Paper  

R 2000 23 [BB15](f-1) DGEMM NE, MKL  

S 4000 26.5 [BB15](f-1) DGEMM NE, Strassen  

T 4500 27 [BB15](f-1) DGEMM NE, D’Alberto Strassen-Winograd  

(** NE: 2x12 Core Intel 2.4 GHz, Ivy Bridge, 64 GB = Single Compute node on NERSC Edison) 

Figure 2: ClusterAnalysis

In figure 2, we compare LLP of several platforms. We found following clusters from the
graph.

1. Cluster 1: It is the biggest cluster. It contains points O [CCM09], P [CCM09], Q [CCM09],
I [NTD11], G [VD08], M [NTD11], B [VD08], N [NTD11] and A [VD08] displaying the
performance results of SGEMM.

2. Cluster 2: It is the second biggest cluster. It contains points showing performance re-
sults of SGEMM and DGEMM. Points C [VD08], D [VD08], E [VD08] show the perfor-
mance results for SGEMM while remaining points F [VD08], L [NTD11], K [NTD11],
H [VD08], J [NTD11], and R [BB15] show the performance of DGEMM. The reason
for degradation of perfomance of SGEMM (Points C, D, E) is due to the selection of
platform parameters and algorithm.

3. Cluster 3: It is the smallest cluster. It contains points S [BB15] and T [BB15] related to
the performance results of DGEMM.

From above graphs we can conclude that

1. Double precision MM typically achieves lower performance in the range of 0-100 GFlops.

2. Single precision MM typically achieves higher performance in the range of 200-400
GFlops.

3. The performance of SGEMM or DGEMM increases with increase in the core utilization.

However some exceptions exist that can be seen from fig. 2.



3 Conclusion and Future Work

In this work, we present a relativey simple methodology to clarify and compare computing
platforms. We illustrate this technique in the case of GPU(s) and MM. The work will be
extended to for the platforms and benchmarks in order to show a systematic approach for
performance evaluation. Future research work is required in the following problem areas.
We must check the parameters effecting the performance in GPU environments. Therefore,
it is necessary to evaluate performance in various GPU environments. We have to write
CPU and GPU programs independently when we want to execute parallel programs using
CPUs and GPUs. However, it is desirable that users are not concerned about whether they
use CPUs or GPUs. Various applications are speeded up when computations to CPUs and
GPUs are directly assigned in parallel processing. Utilizing multiple processor environment
will become a new trend in GPU technology for the benefit of many CPUs and GPUs. In such
environments, new approaches for realizing optimal load balancing are required to achieve
the maximal speed up in the high-performance computing field.
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